

10e11 NOVEMBRO 2025

USO DA MANUFATURA ADITIVA PARA A CONSTRUÇÃO DE KITS DESPLUGADOS PARA ENSINO DE CONCEITOS DE ENGENHARIA

Kauane Triques Brizola (UEM - Universidade Estadual de Maringá)
Larissa Daniella Souza Betim (UEM - Universidade Estadual de Maringá)
Lucas Mateus Maciel (UEM - Universidade Estadual de Maringá)
Manuela de Jesus Firmino Vieira (UEM - Universidade Estadual de Maringá)
Yasmin Carnelossi (UEM - Universidade Estadual de Maringá)
Syntia Lemos Cotrim (UEM - Universidade Estadual de Maringá)
ra133061@uem.br

Resumo:

Este projeto estuda o desenvolvimento de kits desplugados para o ensino de Engenharia por meio da manufatura aditiva (impressão 3D), com foco em tornar recursos pedagógicos mais práticos, acessíveis e sustentáveis. A partir de um diagnóstico participativo com docentes e discentes, definiram-se os requisitos dos kits, selecionaram-se materiais e processos de impressão e elaborou-se um plano de prototipagem, produção e manual de uso. Como objeto de estudo foi escolhida a Engenharia da Qualidade, usando um conjunto de cubos impressos para coleta de medidas que alimentam a construção de Gráficos de Controle (CEP), aproximando os conceitos estatísticos da prática. A metodologia combina revisão bibliográfica, modelagem em Fusion 360, prototipagem iterativa, simulação preliminar e a manuais.Resultados simulados demonstraram elaboração de metodológica e pedagógica, indicando que a combinação de impressão 3D e atividades ativas pode aumentar o engajamento e a compreensão de conceitos abstratos. Recomenda-se avançar para testes em sala de aula para coleta de dados reais e refinamento dos kits.

Palavras-chave: Manufatura aditiva; Kits desplugados; Ensino de Engenharia; Sustentabilidade; Prototipagem; Impressão 3D; Inovação.

1. Introdução

A manufatura aditiva, especialmente a impressão 3D, tem revolucionado a prototipagem na engenharia ao permitir peças complexas de forma rápida, customizável e com menor custo para protótipos e pequenos lotes (BARBOSA et al., 2021). No ensino, essa tecnologia vem sendo adotada como recurso didático para aproximar teoria e prática(AGUIAR, 2016).

No campo educacional, a impressão 3D vem sendo incorporada como ferramenta didática que facilita a visualização de conceitos abstratos e a construção

de instrumentos específicos, mitigando a dependência de laboratórios caros ou de improvisos pedagógicos. (AGUIAR, 2016).


Integrada a metodologias ativas, a manufatura aditiva favorece o engajamento, o pensamento crítico e o desenvolvimento de competências técnicas e transversais, consolidando-se como referência para propor e avaliar kits desplugados (BARBOSA et al., 2021).

O público-alvo envolve docentes, discentes e participantes de extensão. Os objetivos incluem desenvolver e validar protótipos 3D, avaliar materiais com foco em sustentabilidade, elaborar manuais e testar a aplicação em práticas, seguindo experiências já bem-sucedidas.

2. Metodologia

A pesquisa foi estruturada em etapas sequenciais, iniciando com revisão bibliográfica sobre manufatura aditiva e métodos de ensino participativos, com foco no Gráfico de Controle na Engenharia da Qualidade. Em seguida, planejou-se a impressão 3D de cubos para dinâmicas didáticas, com protótipos, simulações e planilhas validadas por análise estatística. Paralelamente, utilizou-se o software Fusion 360 (Autodesk) para modelagem de peças-piloto, a qual seriam impressas no departamento de Engenharia de Produção e integradas ao kit didático. Complementarmente, elaboraram-se manuais para docentes e discentes, padronizando a aplicação da ferramenta permitindo comparar os resultados e avaliar o impacto dos kits na aprendizagem.

Figura 1. cubo do kit modelado no 360.

Exemplo de um sendo software Fusion

Fonte: Elaboração própria, 2025. Digital, 9,21cm X 4,7cm.

3. Resultados e Discussão

Até o momento, o projeto não foi aplicado em atividades reais de ensino. Entretanto, foi realizada uma simulação preliminar para verificar a viabilidade prática da proposta. Os cubos, modelados no software Fusion 360 com dimensões variadas (23, 25, 27, 26, 18, 17 e 21 mm), serviram como base para a coleta de dados simulados, representando amostras que seriam obtidas em uma atividade didática.

Figura 2. Exemplo de tabela no Excel da coleta de medições.

Amostra	Medições Realizadas												
	X1	X2	X3	X4	X5	Média	Amplitude	LSC Xbar	LM Xbar	LIC Xbar	LSC R	LM R	LIC Xbar
1	25	23	27	25	25	25	4	27,599	24,6	21,601	10,995	5,2	0
2	25	26	26	27	23	25,4	4	27,599	24,6	21,601	10,995	5,2	0
3	26	25	25	25	25	25,2	1	27,599	24,6	21,601	10,995	5,2	0
4	23	25	17	25	27	23,4	10	27,599	24,6	21,601	10,995	5,2	0
5	17	25	25	26	25	23,6	9	27,599	24,6	21,601	10,995	5,2	0
6	25	25	26	25	23	24,8	3	27,599	24,6	21,601	10,995	5,2	0
7	27	25	23	25	25	25	4	27,599	24,6	21,601	10,995	5,2	0
8	26	25	23	25	17	23,2	9	27,599	24,6	21,601	10,995	5,2	0
9	23	27	26	25	25	25,2	4	27,599	24,6	21,601	10,995	5,2	0
10	25	23	25	26	27	25,2	4	27,599	24,6	21,601	10,995	5,2	0

Fonte: Elaboração própria, 2025. Digital, 11,85cm X 3,32cm.

A partir dessas medidas, foi elaborado no Excel um gráfico de controle, seguindo a lógica da ferramenta de Controle Estatístico de Processo (CEP). Essa simulação permitiu compreender o fluxo da dinâmica proposta: coleta de dados → registro em planilha → construção da carta de controle → análise de estabilidade do processo.

Figura 3. Exemplo da construção de um Gráfico de Controle no Excel.

Fonte: Elaboração própria, 2025. Digital, 11,38cm X 6,95cm.

Embora ainda não tenha sido aplicado com discentes, essa etapa foi essencial para validar a coerência do kit desplugado e identificar ajustes antes da implementação acadêmica. O exercício demonstrou que a manufatura aditiva, aliada a ferramentas estatísticas, pode tornar o ensino mais interativo, facilitando a visualização prática de conceitos abstratos. Os resultados parciais indicam que o projeto é viável, reforçando sua relevância pedagógica e seu potencial de aplicação futura em disciplinas de Engenharia.

4. Considerações

O projeto demonstrou a viabilidade da manufatura aditiva para criação de kits desplugados em Engenharia, com simulações (cubos no Fusion 360 e gráficos no Excel) validando a metodologia e o fluxo de dados. Integrada a metodologias ativas, a impressão 3D aproxima teoria e prática, facilitando o ensino de ferramentas de qualidade como o Controle Estatístico de Processo, além de permitir flexibilidade, personalização e uso de materiais reciclados. Apesar de preliminares, os resultados são promissores, indicando a continuidade do desenvolvimento e aplicação em sala para consolidar o kit como recurso pedagógico.

Referências

AGUIAR, L. C. D. Um processo para utilizar a tecnologia de impressão 3D na construção de instrumentos didáticos para o Ensino de Ciências. Dissertação (Mestrado em Educação para a Ciência) — Faculdade de Ciências, UNESP, Bauru, 2016.

BARBOSA, J. B. M. et al. Utilização de impressoras 3D para o desenvolvimento de metodologias ativas em cursos de Engenharia. Research, Society and Development, v. 10, n. 10, 2021.

BEZERRA, F. L. A. et al. Desenvolvimento e impressão 3D de equipamentos industriais para visualização e simulação de processos na extensão universitária. Extensão em Debate, Ed. Reg. nº 22, Vol. 14/2025. 2025.

